English	
All ancient civilizations have felt the need to study the sky. Their observations were restricted by the capabilities provided by the sole optical instrument they possessed. The human eye.	
All they could see, without being able to understand their nature, were 3500 stars at most.	
But, In our days science has managed to observe the universe at enormous distances of up to almost 13 billion light years.	
One light year is the distance a light ray travels in a year and is about 10 trillion kilometers.	
The modern image of the Universe reveals a huge, complex and impressive environment, in which we exist as we live and evolve on the surface of a small but hospitable planet, called the Earth.	
Earth is the only oasis of life at least in our solar system.	
The conditions prevailing on its surface allow the existence of huge amounts of water in liquid form both in the seas and on land.	
Water in liquid form is the most essential ingredient for the formation and development of the phenomenon of life.	
Limited to the environment of our planet, so far been able to visit and explore only the very near celestial bodies such as the Moon and the planets of our Solar System.	
But how did we manage to study the universe at such enormous distances and understand its content, its structure and its evolution? How did we unveil many of its secrets?	
Unfortunately, only few people know that all this knowledge is gained by the collection and analysis of the dim starlight that reaches the Earth from the remote heavenly bodies known as Stars.	
This adventure actually begun in 1609, when the Italian scientist Galileo Galilei, turned a small homemade telescope to the sky for the first time.	
His observations opened a huge window to the universe and revealed its greatness.	
The optical telescope operates in the same way as the human eye.	
The telescope collects light and focuses it on a single spot. There are refracting telescopes which employ lenses and reflecting telescopes which use concave mirrors to collect and focus the light.	
The amount of the collected light depends on the area of lens or the mirror of the telescope. A larger optical system collects more light and thus makes visible dim celestial	

Unveiling the Invisible Universe

objects which are invisible to the human eye.	
Most dim objects are invisible because they are distant.	
Their image, traveling at the speed of light takes a long time	
to cover the enormous distances. Thus, when we observe	
them through the telescope, we see them as they were in	
the past.	
In other words, a telescope is a kind of time - machine that	
allows us to observe the universe as it was in the past and	
thus understand its evolution.	
As time passed, the telescope evolved from Galileo's	
simplistic instrument into huge technologically advanced	
and precise scientific instruments.	
Today we use large optical telescopes placed strategically on	
remote mountain tops all over our planet.	
Far from the urban areas they avoid light pollution which	
prevents astronomical observations.	
Furthermore, in the high altitudes on mountains where	
there are built the atmosphere is much more transparent	
and stable.	
The larger telescopes in the 8 - 10 meter range aperture that	
are used by the American astronomers placed on Mauna Kea	
in Hawaii.	
The European Southern Observatory (ESO) has erected the	
very large telescope (VLT) on Cerro Paranal in the Chilean	
Atacama desert. This telescope consists of 4 reflectors with a	
diameter of 8.2 meters each.	
The Atacama desert is one of the most arid places on Earth	
thus providing ideal conditions for astronomical	
observations.	
These telescopes can observe in optical and infrared	
radiation and can record objects 4 billion times dimmer than	
those can be observed by the naked eye.	
They weigh hundreds of tons, but are capable of pointing	
and tracking celestial objects extremely accurately. They also	
employ adaptive optics which can compensate for	
atmospheric disturbances.	
And are equipped with many auxiliary instruments such as	
light sensitive cameras and high technology spectrographs.	
These large telescopes are mostly used for the study of the	
large scale structure and the evolution of the universe, by	
observing the remote clusters of galaxies and the	
interactions between their members.	
Alongside these giant telescopes, the older and smaller	
telescopes continue to contribute significantly in scientific	
research.	
In the near future, new giant earth based optical telescopes,	
such as the European Extremely Large Telescope (ELT), will	

Unveiling the Invisible Universe

be available to astronomers. It will have a 40 meter	
diameter segmented mirror and will be erected at Cerro	
Armazores in the Atacama desert in a few years.	
Yet, in spite of all these technological advancements, we still	
cannot eliminate all the problems caused to astronomical	
observation by the Earth's atmosphere. Thus, we had to put	
telescopes in space above Earth's atmosphere.	
Until now, the biggest space telescope is Hubble, which has	
a mirror of 2.4 meters.	
Since1991, Hubble observes the universe with	
unprecedented accuracy and is credited with many	
important discoveries.	
Hubble's successor is the James Webb space telescope.	
This telescope has a 6.5 meters mirror and is designed to	
observe light in infrared radiation.	
It will be able to observe galaxies at a distance of 12.5 billion	
light years.	
But light is something more than that recorded by all	
mentioned optical telescopes.	
Light consists of electromagnetic radiations at different	
frequencies. All these together make up the electromagnetic	
spectrum. Most of them of course invisible to the human	
 eye but also to even the most advanced optical telescopes.	
The celestial bodies we observe and all astronomical	
phenomena emit in several frequencies simultaneously.	
But, they emit most strongly in some frequencies according	
to their energy level.	
These hot and violent processes radiate mostly in short	
wavelengths whereas the colder and quieter processes	
radiate in longer wavelengths as microwaves and radio	
 waves.	
Radio waves are observed with giant parabolic antennas,	
called radio telescopes. These instruments can observe the	
sky 24 hours a day regardless of atmospheric conditions.	
There are many radio telescopes around our planet.	
The most sophisticated of them, is ALMA which is situated	
on a high altitude plateau in the Atacama desert in Chile.	
Most of the electromagnetic radiation cannot pass through	
the Earth's atmosphere. For this reason we put in orbit	
space observatories that can observe in all the frequencies	
of the electromagnetic spectrum.	
Most notably, the high energy ultraviolet, X-rays and	
Gamma rays cannot be observed from the Earth's surface at	
all.	
The only way to observe the Universe at high energies is to	
use observatories in space. These observatories allow us to	
study physical processes previously unimaginable.	
stady physical processes previously utilitiagillable.	

But X-rays and Gamma rays allow us to observe the most violent and impressive phenomena of the Universe. For example, the sky seen at these wavelengths is completely different from the usual image of the quiet, night	
sky. But light is not the only source of information about physical processes in the Universe.	
During violent high-energy natural processes in the Universe, elementary particles called neutrinos are produced in inconceivably large numbers.	
Neutrinos are elusive particles that move at relativistic speeds, have minimal mass, and rarely interact with the rest of matter.	
To detect them we use special sensors deep in the ground or at sea to minimize the various interferences.	
Finally, as the General Theory of Relativity predicts, the space-time web is altered by the existence of mass and Energy.	
Some of the most violent and energetic processes in the Universe, produce ripples, the gravitational waves, in the fabric of space-time.	
These cosmic ripples travel at the speed of light, carrying with them information about their origins, as well as clues to the nature of gravity itself.	
Recently, we have managed to develop special observatories for recording these ripples as they pass through our planet.	
LIGO – the Laser Interferometer Gravitational Wave Observatory in the US and the Virgo antenna hosted at the European Gravitational Observatory (EGO) at Pisa Italy, employ very sensitive laser interferometers to detect them.	
Let's have a look to some of the most violent phenomena in the Universe that must be observed by all our instruments in order to have a clear picture of the underlying natural	
processes. The most massive stars suffer violent death during Supernovae explosions.	
After these explosions, the cores of stars can end as white dwarfs, neutron stars or black holes.	
In particular the stars with high masses end up in what we call black holes. From these stellar remnants nothing can escape. Even light gets trapped, making these objects invisible.	
Black Holes attract everything that goes near them, thus increasing their mass.	

·		
	Matter, as it collapses onto black holes, creates an accretion	
	disk around them as it spirals inward.	
	In this disk, the temperature and kinetic energy are so high	
	that gamma rays and X-rays are generated.	
	At the same time, strong gravitational fields create jets,	
	which move with a speed close to the speed of light and	
	interact violently with the interstellar matter that surrounds	
	them. This produces radiation at all light frequencies. The death of medium mass stars creates what we call	
	neutron stars. These small but very dense objects spin at	
	very high velocities and their radiation can most easily be	
	observed when the beam of emission is pointing toward	
	Earth.	
	This creates periodical changes in their luminosities and this	
	is why we call them pulsars.	
	Pulsars may also have accretion disks and jets, but their	
	scales are smaller compared to black holes.	
	Binary stars can be very close together interacting strongly	
	with each other or eventually merging.	
	There are special cases, where one of the binary stars is very	
	dense, like a neutron star or a stellar mass black hole. In	
	these cases, mass is transferred to the neutron star or stellar	
	black hole from the accompanying star.	
	The results of the merging of two common stars or the more	
	violent merging of two neutron stars.	
	These mercers always and up in the brightest avalacians	
	These mergers always end up in the brightest explosions	
	known, which produce copious amounts of X-rays and	
	Gamma rays – the Gamma-ray Bursts.	
	Furthermore, they also produce detectable gravitational	
	waves.	
	waves.	
	Less often, but at larger scales and more impressive are the	
	mergers of two black holes.	
	These are the most violent phenomena in the universe and	
	generate inconceivable amounts of energy in the form of	
	gravitational waves.	
	The environment at the centre of our Galaxy is a super	
	massive black hole which interacts with the surrounding	
	matter. Studies of the motion of nearby stars revealed that	
	the mass of the black hole is 4 million times the mass of our	
	Sun.	

Unveiling the Invisible Universe

	Observations from the Fermi telescope showed that there	
	are two large lobes of gamma rays that expand out to 25000	
	light years from the centre of our Galaxy. These lobes are	
	ejected by violent phenomena at the very center of our	
	galaxy.	
	Galaxies that emit huge amounts of energy from their nuclei	
	and are known as Active Galactic Nuclei: radio galaxies,	
	quasars and blazars.	
	These galaxies have supermassive black holes in their	
	centers, with masses a million or even a billion times the	
	mass of our Sun and accrete huge amounts of matter and	
	jets that extend out into the intergalactic medium.	
	The interactions, collisions and mergers of whole galaxies,	
	play a crucial role in their evolution.	
	Finally, we can observe the primordial universe, where the	
	death of the first stars was much more violent and the	
	interactions and merging of the galaxies was taking place	
	more often.	
	The decoding of the hidden messages that the light of stars	
	carry, as well as the torrents of exotic particles and space	
	itself, reveal to us the Universe in all its grandeur.	
	,	
	Humans although bound on the surface of a small planet	
	called Earth, have the ability with science to glimpse the	
	limits of the visible and invisible Universe.	
L		

The video is released under: Creative Commons License

Film Director: Theofanis Matsopoulos

Script/Scientific Advisors: Dr. Vadim Burwitz, Dr. Maite Ceballos, Marco Faccini, Dr. Ioannis Georgantopoulos, Prof. Stavros Katsanevas, Nicolas Matsopoulos, Dr. Lorenzo Natalucci, Prof. Paul O'Brien, Dr. Edwige Pezzulli, Dr. Luigi Piro, Dr. Ektoras Pouliasis, Dr. Francesca Spagnuolo, Dr. Natalie Webb

Music: Costas Papageorgiou

English Narration: Gregory Patrick Karr

Produced by: Integrated Activities in the High-Energy Astrophysics Domain (AHEAD2020)

This project is funded by European Union's Horizon 2020 research and innovation

programme under grant agreement No 871158