The Moon's Greek mythological name is "Selene"
The Moon is $385,000 \mathrm{~km}(240,000 \mathrm{miles})$ or
1.3 light-seconds from the Earth

During a spacewalk astronauts breathe pure oxygen
A full oxygen tank lasts approx. 6-8 hours
Apollo 11, the first mission to land on the Moon, took 3 days to get there The module landed 24 hours later with just seconds of fuel to spare
After the fuel tank explosion on Apollo 13, the crew had to make manual inflight corrections
The corrections were made using an on-board sighting scope and a wristwatch All three crewmembers returned safely to Earth

Saturn's rings are $280,000 \mathrm{~km}(175,000 \mathrm{miles})$ in diameter
A Formula 1 car would take about three months to complete one lap
The rings are also very thin, ranging from just 10 m to 200 m thick
It's thought that the rings may only be around 400 million years old
That's much younger than Saturn itself, at 4.5 billion years old
The rings are mainly ice particles which are slowly raining down on Saturn
The rings may therefore only last another 100 million years or so
Saturn's density is only $0.69 \mathrm{~g} / \mathrm{cm}^{3}$ which means that...
... if you could find a large enough bathtub, it would float!
When a large star runs out of hydrogen, it eventually explodes as a supernova

The very large ones collapse to form black holes
Whereas the smaller ones become something different
Their cores are compressed to form very dense neutron stars
Although only a few miles across, they can have a greater mass than the Sun
Some neutron stars emit powerful beams of electromagnetic radiation
These "pulsar" beams are detected with radio telescopes
Due to the conservation of angular momentum, these tiny objects can spin extremely fast
The fastest known pulsar rotates 714 times a second
Pulsar timing is more accurate than an atomic clock...
...but you wouldn't want one sitting on your mantelpiece!
The planets all rotate at different speeds
Mercury: 58d 15h 30m Venus: 243d 26m
Earth: 23h 56m Mars: 24h 36m
Jupiter: 9h 55m Saturn: 10h 33m
Uranus: 17h 14 m Neptune: 16 h 0 m
The Sun exhibits "differential rotation"
The equator rotates every 25 days, whereas the poles rotate every 38 days This twisting creates disturbances in the Sun's magnetic field ...
... resulting in the release of charged particles (plasma) known as coronal mass ejections
Plasma flows away from the Sun, carried on the "solar wind"
This flow of charged particles can move at 750 km per second (466 miles per second)
The radiation caused by these particles is dangerous to human and animal DNA Fortunately, due to its liquid iron core, the Earth has a strong magnetic field
... that safely deflects most of these charged particles away into space
However, some particles make it through, and interact with the Earth's
magnetosphere
Aurora: Roman goddess of dawn
Borealis: Greek god of the north wind
Australis: Greek god of the south wind

The Sun is losing 4.3 million tonnes of mass every second
Don't worry
There's still plenty of it left
This loss of mass means the gravitational pull on the planets is steadily decreasing
The Earth is therefore slowly drifting away from the Sun
So, every year is getting LONGER
An Earth year lengthens by 2 hours every billion (1,000,000,000) years!
What will happen to our Sun?
4-5 billion years from now...
The Sun's core will shrink to become a white dwarf
Whatever species still inhabit our home planet...
...will face certain annihilation
As the core shrinks, the outer shell will expand enormously
The terrestrial planets Mercury, Venus, Earth \& Mars will be scorched and destroyed
In the millennia that follow, the Sun will become a planetary nebula, like the Dumbbell Nebula (Messier 27)

There are 88 keys on a full-size piano
and 88 official constellations in the night sky
Stars of all sizes are dying regularly within our galaxy
On average:
planetary nebulae: 1 per year
supernovae: 2 per century
Yet galaxies contain billions of stars, so collectively they can't 'die' Instead ...
... they collide!
That was a computer simulation, yet real galaxies are colliding all the time
(far more slowly)
Will this ever happen to our own Milky Way galaxy?
Yes
The Milky Way and the Andromeda galaxy are rushing towards each other
Around 4 billion years from now the two will begin to merge
The merger will take around 2 billion years
Eventually, the galaxies will become one

On average, it cost $\$ 272,000$...
... to launch 1 kg of payload on the (now retired) Space Shuttle
\$2million was saved on every launch simply by not painting the external fuel
tank white
With 135 missions, the Space Shuttle program cost a total of $\$ 192$ billion
Built in 1989, the 3.6 m New Technology Telescope in Chile cost 12.5 million Euros to build...
That is 31 million Euros in today's money
Due for completion in 2025, the 39m Extremely Large Telescope will cost a little more...
The projected price tag is in excess of 1.3 billion Euros
With flight and spaceflight, testing is very important...
... and mistakes must be made to learn valuable lessons
Of course, these mistakes cost money ...
... and over the decades this has become more and more expensive ...
... and much more spectacular!
Might we find riches in space?
Asteroid \#16 "Psyche" is a possible failed planetary core made of iron, nickel, and gold

This 225 km wide "rock" is estimated to have a value of £ $10,000,000,000,000,000,000$
Yet we likely won't be mining it anytime soon!
Studies suggest that lightning in Jupiter's atmosphere causes methane to carbonise into soot
The soot falls towards the core, experiencing increasing temperatures and pressures as it does so
The result? It rains diamonds!

In many parts of the world, the rich literally rub shoulders with the poor Highrise executive apartments exist immediately next to tightly-packed slums The nine most populated cities in the world each has over 20 million inhabitants
Top of the list is Tokyo, with a population of 37.4 million (2023 data) In February 2023, the world's population exceeded 8 billion It's expected to reach 10 billion by the year 2057
Although dramatic and devastating, oil spills from ships aren't the biggest polluters of the world's oceans
Land-based run-off from road vehicles contributes ten times more oil pollution annually
18% of the world's population own motor vehicles
The global total in 2022 was 1.5 billion vehicles
Zarya, the first module of the International Space Station (ISS), was launched in November 1998
Since then, a further 38 modules have been added to complete the structure The ISS is now 109 m long with a solar array span of 74 m
The ISS travels at $27,600 \mathrm{~km} / \mathrm{h}(17,100 \mathrm{mph})$
It takes just 93 minutes to complete one orbit
Astronauts on board experience 15 sunrises and sunsets every day
NASA has announced that the ISS will cease operations in mid-2030
After nearly 180,000 orbits over 32 years, it will enter the Earth's atmosphere and burn up
The UN has documented that there are 1.6 billion people residing in poor housing worldwide
Around 15 million people are forcibly evicted each year
Since the start of the 20 th century there have been 68 major conflicts
This has led to the deaths of an estimated 174 million people

This is William Herschel, discoverer of the planet Uranus
Most famous as an astronomer, he also performed experiments with light
He expanded on Newton's dispersive prism experiments from 134 years earlier
He used thermometers to measure the temperature of each wavelength of light
But he noticed that the temperature was higher BEYOND the red end of the spectrum
He named this invisible radiation "Calorific Rays"
Herschel had discovered infrared radiation
One year later, Johann Ritter discovered ultraviolet radiation using a similar method
He placed paper soaked in silver chloride (AgCl) at the violet end of the spectrum

Aware that AgCl reacts to visible light, he observed invisible rays beyond the violet causing the same effect
Over the next 112 years the rest of the electromagnetic spectrum was discovered

1887
Radio waves
\& microwaves
Heinrich Hertz
1895
X-rays
Wilhelm Röentgen
1900
Gamma rays
Paul Ulrich Villard
1912
Cosmic rays
Victor Hess
So, we now know that visible light is just one part of a much larger spectrum
Astronomers use this fact to their advantage
Far more knowledge can be gained by observing in multiple wavelengths
A plethora of ground \& space-based telescopes now observe the Universe in all
wavelengths
You really can filter the Universe with "Any Colour You Like"

People with the desire to explore outer space are a special breed...
NASA regards them as being made of "the right stuff"
Others regard them as being "lunatics"

